4-Chloro-2-(4-oxopent-2-en-2-ylamino)phenol

Cengiz Arici, ${ }^{a}$ M. Nawaz. Tahir, ${ }^{a}$ Dinçer Ülıü̈ ${ }^{a}$ and Orhan Atakol ${ }^{b}$
${ }^{a}$ Department of Engineering Physics, Hacettepe University, Beytepe 06532, Ankara, Turkey, and ${ }^{b}$ Department of Chemistry, Ankara University, Tandogan 06100, Ankara, Turkey. E-mail: dulku@lidya.cc.hun.edu.tr

(Received 6 April 1999; accepted 23 June 1999)

Abstract

In the title compound, $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{ClNO}_{2}$, there is an intramolecular hydrogen bond between the amino group and the carbonyl O atom [$\mathrm{N} \cdots \mathrm{O} 2.686$ (3) Å]. Additional intermolecular hydrogen bonds between the phenol O atom and the carbonyl groups of neighbouring molecules $[\mathrm{O} \cdots \mathrm{O} 2.634$ (2) \AA] form a polymeric chain. The molecule is not planar. The dihedral angle between the aromatic ring and the bidentate Schiff base moiety is $44.51(7)^{\circ}$. The characteristic Schiff base N-C bond length is 1.339 (3) \AA.

Comment

Schiff base ligands are used to synthesize new organometallic compounds. They are also widely used in dyes. The title compound, (I), is a newly synthesized Schiff base which could be utilized in obtaining new complexes. A comparison of the title compound with bis[4-(5-chloro-2-hydroxyphenylimino)-2-penten-2-olato(2-)]dicopper(II) (Tahir et al., 1996) confirms the structure.

The title compound contains four molecules in the monoclinic unit cell. The crystal structure is stabilized by one intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O} 2$ and one intermolecular $\mathrm{O} 1-\mathrm{H} \cdots \mathrm{O} 2^{i}$ hydrogen bond [symmetry code: (i) $\left.\frac{1}{2}+x,-\frac{1}{2}-y, z\right]$. Atoms $\mathrm{O} 1, \mathrm{Cl}$ and N 1 are almost coplanar with the six-membered aromatic ring (Cl-C6) (Fig. 1). The distances of O, Cl and N 1 atoms from the plane of the aromatic ring are $0.030(1), 0.0343$ (6) and $-0.004(1) \AA$, respectively. The $\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8-$ C9-O2 moiety is also planar. The intramolecular hydrogen bond between N 1 and O 2 has an $\mathrm{N} \cdots \mathrm{O}$
distance of $2.686(3) \AA$. This distance is longer than the intramolecular hydrogen bonds observed in other free Schiff bases such as 5-chloro-2-[(2-hydroxybenzylidene)aminomethyl]phenol (Kevran et al., 1996) and N-n-propyl-2-oxo-1-naphthylidenemethylamine (Kaitner \& Pavlović, 1996); the intramolecular N \cdots O hydrogenbond distances are 2.599 (3) and 2.578 (2) \AA, respectively. The two methyl C atoms, C 10 and C 11 , are -0.070 (2) and -0.108 (2) \AA from the best plane of this moiety. The dihedral angle between the aromatic ring (C1-C6) and the best plane through the $\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8-$ C9-O2 plane is $44.51(7)^{\circ}$, so that the whole molecule is not planar.

Fig. 1. PLATON (Spek, 1999) drawing of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small circles of arbitrary radii.

The $\mathrm{C}-\mathrm{C}$ distances in the aromatic ring have expected values [average 1.382 (2) Å]. The bond lengths of the substituents in the six-membered ring [$\mathrm{Cl}-\mathrm{Ol}$ 1.353 (3) \AA and $\mathrm{C} 4-\mathrm{Cl} 1.743$ (2) \AA] have similar values to those reported for other Schiff bases (Kevran et al., 1996, and references therein). The methyl C atoms have equal distances to their respective bonded C atoms [C7-C10 1.496 (3) \AA and C9-C11 1.499 (4) \AA]. The N1-C7 bond, which is characteristic of a Schiff base, is 1.339 (3) \AA. The intermolecular hydrogen bond between O 1 and $\mathrm{O} 2^{\mathrm{i}}$, with an $\mathrm{O} \cdots \mathrm{O}$ distance of 2.634 (2) \AA, links the molecules in the unit cell.

Experimental

To a solution of 2 -amino-4-chlorophenol ($1.435 \mathrm{~g}, 10 \mathrm{mmol}$) in ethanol (30 ml), a solution of 2,4-pentanedione ($1 \mathrm{~g}, 10 \mathrm{mmol}$) in ethanol (20 ml) was added and the mixture heated to boiling. The resulting mixture was set aside for 2 d at 288 K . Lightyellow prismatic crystals were filtered off and dried in air.

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{ClNO}_{2}$
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$

Monoclinic
$P 2_{1} / a$
$a=10.1911$ (11) \AA
$b=11.3039(13) \AA$
$c=11.0983(11) \AA$
$\beta=115.830$ (2) ${ }^{\circ}$
$V=1150.8(2) \AA^{3}$
$Z=4$
$D_{x}=1.302 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan empirical via ψ scans (Fair, 1990) $T_{\text {min }}=0.928, T_{\text {max }}=0.939$
2265 measured reflections 2019 independent reflections

Refinement

Refinement on F
$R=0.036$
$w R=0.045$
$S=0.96$
1557 reflections
136 parameters
H atoms constrained

$$
\begin{aligned}
w= & 1 /\left[\sigma F^{2}+(0.02 F)^{2}\right. \\
& +1.0], \text { except } w=0 \\
& \text { if } F^{2}<3 \sigma F^{2}
\end{aligned}
$$

Cell parameters from 25 reflections
$\theta=11.47-20.92^{\circ}$
$\mu=0.309 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Prismatic
$0.40 \times 0.25 \times 0.20 \mathrm{~mm}$ Light yellow

Table 1. Selected geometric parameters $\left(\AA,^{\circ}\right)$

$\mathrm{Cl}-\mathrm{C} 4$	$1.743(2)$	$\mathrm{N} 1-\mathrm{C} 7$	$1.339(3)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.353(3)$	$\mathrm{C} 7-\mathrm{C} 10$	$1.496(3)$
$\mathrm{O} 2-\mathrm{C} 9$	$1.256(3)$	$\mathrm{C} 9-\mathrm{Cll}$	$1.499(4)$
$\mathrm{N} 1-\mathrm{C} 6$	$1.418(3)$		
$\mathrm{C} 6-\mathrm{Nl}-\mathrm{C} 7$	$128.9(2)$	$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5$	$122.7(2)$
$\mathrm{OI}-\mathrm{Cl}-\mathrm{C} 2$	$123.2(2)$	$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	$121.0(2)$
$\mathrm{O} 1-\mathrm{Cl}-\mathrm{C} 6$	$117.5(2)$	$\mathrm{N}-\mathrm{C} 7-\mathrm{C} 10$	$119.9(2)$
$\mathrm{Cl}-\mathrm{C} 4-\mathrm{C} 3$	$119.6(2)$	$\mathrm{O} 2-\mathrm{C} 9-\mathrm{C} 8$	$123.0(2)$
$\mathrm{Cl}-\mathrm{C} 4-\mathrm{C} 5$	$118.9(2)$	$\mathrm{O} 2-\mathrm{C}-\mathrm{Cll}$	$118.8(2)$
$\mathrm{N} 1-\mathrm{C} 6-\mathrm{Cl}$	$117.5(2)$		

Table 2. Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	H. . A	D. . A	D-H. . A
$\mathrm{Ol}-\mathrm{H1} \cdots{ }^{\text {a }}$	0.83	1.80	2.634 (2)	178
$\mathrm{N} 1-\mathrm{Hl}^{\prime}$. . O22	0.86	1.97	2.686 (3)	139

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1993). Data reduction: MolEN (Fair, 1990). Program(s) used to solve structure: SIR (Giacovazzo, 1980). Program(s) used to refine structure: MolEN. Molecular graphics: PLATON99 (Spek, 1999). Software used to prepare material for publication: MolEN.

The authors wish to acknowledge the purchase of the CAD-4 diffractometer under grant DPT/TBAGI of the Scientific and Technical Research Council of Turkey.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1291). Services for accessing these data are described at the back of the journal.

References

Enraf-Nonius (1993). CAD-4 EXPRESS. Version 1.1. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft. The Netherlands.
Giacovazzo, C. (1980). Acta Crust. A36, 362-372.
Kaitner, B. \& Pavlović, G. (1996). Acta Cryst. C52, 2573-2575.
Kevran, S., Elmali, A. \& Elerman, Y. (1996). Acta Cryst. C52, 32563258.

Spek, A. L. (1999). PLATON99. Molecular Geometry Program. University of Utrecht, The Netherlands.
Tahir, M. N., Ulkü, D.. Atakol, O. \& Akay, A. (1996). Acta Cryst. C52, 2676-2678.

Acta Cryst. (1999). C55, 1692-1698

'Push-pull' effects in nitroethenamines

Anthony Linden, ${ }^{a}$ Dally Moya Argilagos, ${ }^{a}$ Heinz Heimgartner, ${ }^{a}$ María I. García Trimiño ${ }^{b}$ and Arturo Macías Cabrera ${ }^{c}$
${ }^{a}$ Institute of Organic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland, ${ }^{b}$ Laboratorios MedSol, Avenida 23el 264 y 266, Siboney, Havanna, Cuba, and ${ }^{\text {' Centro Nacional de Investigaciones }}$ Científicas (CNIC), Avenida 25, No. 15208, Cubanacán,
AP 6990, Havanna, Cuba. E-mail: alinden@oci.unizh.ch

(Received 2 March 1999; accepted 17 May 1999)

Abstract

(E)-N-methyl-1-(methylthio)-2-nitroethenamine, $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{2}$ $\mathrm{O}_{2} \mathrm{~S}$, is a near-planar molecule with significant π electron delocalization from the ethylene bond into the enamine $\mathrm{C}-\mathrm{N}$ bond. In the two nitrothioacrylamide derivatives, N -benzoyl-3,3-bis(methylamino)-2-nitrothioacrylamide, $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$, and N -cinnamoyl-3,3-bis(di-methylamino)-2-nitrothioacrylamide, $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$, the formal ethylene bond has single-bond properties with a length of about $1.49 \AA$, while the magnitudes of the torsion angles about this bond approach 90°. The enamine $\mathrm{N}-\mathrm{C}$ bonds have significant double-bond character and there is significant electron delocalization in the nitrothioacrylamide moiety of each molecule. These compounds can be described as 'push-pull' ethylenes rather than as enamines and are best represented by a zwitterionic formulation in which the charges are accumulated near the opposite ends of the ethylene bond. A strong intramolecular hydrogen bond involving the amide and nitro groups in each compound maintains a rigid confor-

